3,297 research outputs found

    A Hierarchical Encoder-Decoder Model for Statistical Parametric Speech Synthesis

    Get PDF

    Letter-based speech synthesis

    Get PDF
    Initial attempts at performing text-to-speech conversion based on standard orthographic units are presented, forming part of a larger scheme of training TTS systems on features that can be trivially extracted from text. We evaluate the possibility of using the technique of decision-tree-based context clustering conventionally used in HMM-based systems for parametertying to handle letter-to-sound conversion. We present the application of a method of compound-feature discovery to corpusbased speech synthesis. Finally, an evaluation of intelligibility of letter-based systems and more conventional phoneme-based systems is presented

    Using generative modelling to produce varied intonation for speech synthesis

    Full text link
    Unlike human speakers, typical text-to-speech (TTS) systems are unable to produce multiple distinct renditions of a given sentence. This has previously been addressed by adding explicit external control. In contrast, generative models are able to capture a distribution over multiple renditions and thus produce varied renditions using sampling. Typical neural TTS models learn the average of the data because they minimise mean squared error. In the context of prosody, taking the average produces flatter, more boring speech: an "average prosody". A generative model that can synthesise multiple prosodies will, by design, not model average prosody. We use variational autoencoders (VAEs) which explicitly place the most "average" data close to the mean of the Gaussian prior. We propose that by moving towards the tails of the prior distribution, the model will transition towards generating more idiosyncratic, varied renditions. Focusing here on intonation, we investigate the trade-off between naturalness and intonation variation and find that typical acoustic models can either be natural, or varied, but not both. However, sampling from the tails of the VAE prior produces much more varied intonation than the traditional approaches, whilst maintaining the same level of naturalness.Comment: Accepted for the 10th ISCA Speech Synthesis Workshop (SSW10

    Learning word vector representations based on acoustic counts

    Get PDF

    Puffin: pitch-synchronous neural waveform generation for fullband speech on modest devices

    Get PDF
    We present a neural vocoder designed with low-powered Alternative and Augmentative Communication devices in mind. By combining elements of successful modern vocoders with established ideas from an older generation of technology, our system is able to produce high quality synthetic speech at 48kHz on devices where neural vocoders are otherwise prohibitively complex. The system is trained adversarially using differentiable pitch synchronous overlap add, and reduces complexity by relying on pitch synchronous Inverse Short-Time Fourier Transform (ISTFT) to generate speech samples. Our system achieves comparable quality with a strong (HiFi-GAN) baseline while using only a fraction of the compute. We present results of a perceptual evaluation as well as an analysis of system complexity.Comment: ICASSP 2023 submissio

    Speech Waveform Reconstruction using Convolutional Neural Networks with Noise and Periodic Inputs

    Get PDF

    HMM-based synthesis of child speech

    Get PDF
    The synthesis of child speech presents challenges both in the collection of data and in the building of a synthesiser from that data. Because only limited data can be collected, and the domain of that data is constrained, it is difficult to obtain the type of phonetically-balanced corpus usually used in speech synthesis. As a consequence, building a synthesiser from this data is difficult. Concatenative synthesisers are not robust to corpora with many missing units (as is likely when the corpus content is not carefully designed), so we chose to build a statistical parametric synthesiser using the HMM-based system HTS. This technique has previously been shown to perform well for limited amounts of data, and for data collected under imperfect conditions. We compared 6 different configurations of the synthesiser, using both speaker-dependent and speaker-adaptive modelling techniques, and using varying amounts of data. The output from these systems was evaluated alongside natural and vocoded speech, in a Blizzard-style listening test
    • …
    corecore